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SUMMARY 
The aim of this paper is to use the least-squares finite element method to simulate a quasi-one-dimensional H2/02 
flame with comprehensive physical property models. 

KEY WORDS LSFEM reacting flows 

1. INTRODUCTION 

Recent developments in computational fluid dynamics yielding faster and more robust flow solvers 
have kindled the pursuit of calculations with detailed chemical kinetics. In this work we employ the 
least-squares finite element method (LSFEM)' to simulate a quasi-one-dimensional flame with 
comprehensive physical property models. This work is a building block for applying the LSFEM to 
simulate chemically reacting flows. In parallel, we have used the LSFEM for solving low-Mach- 
number compressible 

Quasi-one-dimensional, premixed, flat flames are commonly used to study flame structure and 
reaction kinetics. In the past, owing to their simple geometry and wide applications, many flat flames 
were thoroughly studied both experimentally and numerically. To simulate an H2/02 flat flame, we 
employ a finite rate kinetics model with eight species and 18 reaction steps. Detailed transport and 
thermodynamic models for each species and gas mixture are included. In spite of the computational 
effort, it is plausible to employ comprehensive physical property models; simplified models usually 
result in inferior predictions. In the calculation we first discretize the time-marching term according to 
the first-order backward difference. By introducing new variables, the transport equations are then cast 
into a set of first-order equations. Based on these first-order equations, the least-squares bctional is 
constructed and minimized to obtain the solution. For each new time step the transport properties and 
finite rate reaction mechanism are updated accordingly. The calculation continues until convergence. 

which are complementary to the present work. 
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In the next section the governing equations and physical property models are presented. In Section 3 
we illustrate the LSFEM for the multiple-species system. In Section 4 we present the simulated results 
and their comparison with the experimental data of Eberius er aL4 

2. THEORETICAL MODEL 

As shown in Figure 1, the premixed fuel and oxidizer flow through a porous plate and a flame is 
stabilized above the burner. The formulation adopted here is similar to that proposed by Hirschfelder er 
aZ.* Previously, the same formulation was solved by Smooke6 using a finite difference method. The 
flow is assumed to be steady and quasi-one- dimensional. The viscous effect is neglected and the 
momentum equation is replaced by the assumption of constant pressure. As a result, only the energy 
and species equations are of concern. For a gas mixture of N, species the energy equation is 

where p is the density, a is the cross-sectional area and h is the enthalpy. Note that the enthalpy is 
defined by the mass weighting of species enthalpies, such as 

N. 
h = C Yj,hi, 

i= 1 

where U, is the mass fraction of species i. The species enthalpy is given as 

f 

Reaction Zone 

I 
Burner 

(3) 

F'uel/oxidizer 

Figure 1. Schematic diagram of premixed hydrogen/oxygen flame 
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where is the heat of formation at temperature T,f and the integral is the sensible energy. Note that 
since h& is included in h, there is no source term in the energy equation. The mass flow rate, i.e. 
m = pua, is a prescribed constant. In the heat conduction term, 1, is the thermal conductivity of the 
gas mixture. The last term of the energy equation is the heat transfer due to species diffusion and D,  is 
the effective difisivity of species i in the gas mixture. 

The species transport equations considered are 

ayi . ay. 
a ( at ax ax E) p a - + m l - -  paDirn- - h i a = O ,  i =  1 ,..., N,, (4) 

where Dim is the effective mass diffusivity of species i in the gas mixture. The source terms hia 
represents the chemical reactions. 

According to the law of mass action,' the stoichiometric equation of a set of N, elementary reactions 
involving N, species is 

where Ci is the mode concentration of species i. KfJ and KbJ are reaction rate constants and are given by 
the Arrhenius form7 

KfJ = A5 9, e-=51RT, K ~ ,  = A,,, e-'W'/IRT, (6) 

where Af, Bf, A,,, Bb and Eb are given constants associated with the adopted kinetic model and R is the 
gas constant of the gas mixture. The rate of change of species i by reaction j is 

i=l i= 1 

The total rate of change of species i is 

(7) 

where qi is the molecular weight of species i. In the present paper the species included are H2, H, OH, 
HzO, 0,02, HO2 and Hz02. To close the system, the equation of state for a gas mixture is imposed 

After each numerical iteration, T and p of the flow field are calculated by solving the definition of 
enthalpy, (equations (2) and (3)) and the equation of state (equation (9)). 

In modelling the physical properties, Cpi is determined by fourth-order polynomials of T: 

Cpi = aOi + aliT + aziTZ + a3T3 + U ~ ~ P .  (10) 

The coefficients are provided by Gordon and McBride.8 The specific heat of the gas mixture is 
obtained by mass concentration weighting: Cp = Xz, Y&. The thermal conductivities for each 
species are least-squares fitted to the following form: 

(1 1) l n l l i  = blilnT+-+++b4i.  b2i b3i 
T T L  



68 S.-T. W ETAL.  

Again, the coefficients are provided by Gordon et ~ 1 . ~  The thermal conductivity of the gas mixture is 
calculated based on the Wassiljewa equation,” which is similar to Sutherland’s form for viscosity: 

For species i ,  
Saxena,” the parameter Bij can be expressed as 

is the mole fraction and li is the thermal conductivity. According to Mason and 

where Mi and Ai are the molecular weight and conductivity of species i respectively and K is an 
empirical constant near unity. As used here, K = I. 

The binary mass difisivity Dii between species i a n d j  is obtained using the Chapman-Enskog 
theory: lo 

[(Mi + M,)/Miq1’2 
P o p ,  

D, = 0.0188T3/2 

where p is the pressure and oij is the binary Lennard-Jones length in angstroms, which is usually 
obtained by a simple rule such as oii = 0.5(oi + 0,). The Lennard-Jones length of each species, gi, is 
available in Reference 10. RD, the diffusion collision integral, is calculated based on the relation 
proposed by Neufeld et al.” 

In simulating the flow motion of a gas mixture, direct use of binary difisivity is cumbersome. It is 
desirable to employ an effective diffusion coefficient Dim for each species i in the gas mixture, such as 

where Fi is the diffusion flux and D, can be calculated based on Williams’s correlation:’ 

The adopted property models are rather complex and computationally 
experience that these complex physical property models are essential 
produce satisfactory predictions. 

intensive. However, it was our 
for the reactive flow solver to 



SIMULATION OF AN H2/02 FLAME 69 

3. LEAST-SQUARES FINITE ELEMENT METHOD 

Introducing the heat conduction flux H and the diffusion flux F, as new variables, the species and 
energy equations can be reformulated into the form 

a& . ay. aF. 
at ax ax 

p a - + m m - ~ - h a = O ,  i =  1 ,..., N,, 

ay. 
Fi = paDi,,,-, i = 1,. . . , N,, ax 

&,a ah H=--. cp ax 

For a computational domain over 0 < x < L the corresponding boundary conditions are 

& = c i  and h=c, at x = O ,  Fi=O and H=O at x = L ,  

where ci and c,  are the prescribed constants. Note that since the governing equations are first-order, 
only Dirichlet boundary conditions are considered. 

To proceed, the equations are cast into the vector form 

% a n  A; - + A', - + st = 0, 
at ax 

where q = (Y,, Y2, . . . , YNs, F,, F2,  . . . , FN,, h, WT. The time-marching terms are included for 
numerical convenience and are discretized by the Euler implicit method. The convective term and 
the source term are linearized in the following fashion: 

qn+ 1 = 9" + Aq, 

After the manipulation, we obtain a new set of equations in vector form ready for finite element 
discretization, 

aAq aqn 
Aq + A; - + A; - + S" = 0, ax ax 

where superscript n denotes the previous time step. The procedures to construct the least-squares 
hctional and its minimization are standard and we refer the interested readers to Reference 1. An 
important feature of the LSFEM is that the final global matrix is always symmetric and positive 
definite. As a result, a simple iterative method such as the Jacobi conjugate gradient method can be 
used to effectively invert the matrix. Since the problem investigated here is one-dimensional, the results 
in this paper are obtained by a direct solver. 

4. RESULTS AND DISCUSSION 

Eberius et aL4 studied a fuel-rich, low-pressure, H2/02 flame in the laboratory. The reactant ratio in 
mole fraction was 75 per cent H2 and 25 per cent 02. The inlet velocity was 1.78 m s-l and the 
pressure was 1413.2 Pa. 
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As pointed out by Smooke; there are two approaches to calculate this flame: (i) the temperature 
profile can be taken from the experimental data and only the species equations are solved or (ii) the 
species and energy equations are solved together, namely the coupled calculation. Whenever the flame 
temperature profile is available, the first approach is a better representation of the experiment, because 
the heat losses of the flame are taken into account. The coupled calculation, on the other hand, usually 
grossly overpredicts the flame temperature. 

Figure 2 shows the convergence history of the calculation with the prescribed temperature profile. 
The abscissa is the number of time steps and the ordinate is the convergence history. In this calculation, 
100 linear elements are used. As shown here, the numerical convergence of H2,02, H20 and OH are 
plotted. The initial species distribution contains only H2 and 02. Before the flame is numerically 
ignited, the initial species profile satisfies the governing equations and the initial convergence 
indicators of H2 and O2 are very small. As a contrast, the indicators of H20 and OH are relatively large. 
As time goes on, the chemical kinetics trigger the numerical ignition and the product species are 
generated. Once the species composition is in the ball park, the calculation converges exponentially to 
machine accuracy. 

s) to allow suitable resolution 
for flame ignition. In the subsequent time steps we increase At geometrically to about unity in 30 time 
steps. A large At, e.g. lo-* s, for initial calculation will lead to a converged trivial solution without 
combustion. In addition, when the ignition is triggered numerically, some of the minor species 
experience violent changes. Therefore in the initial stage of the calculation it is necessary to set a 
bound to prevent the species mass fraction becoming negative or greater than unity. 

Figure 3 shows the calculated mole fraction of H2, O2 and HzO, in which the squares are Eberius et 
d’s  experimental data for H20. The abscissa is the streamwise distance in metres and the ordinate is 
the mole concentrations of species. Since it is a fuel-rich flame, O2 is consumed completely in the 
reaction zone. The flame spreads about 2 cm owing to the low pressure. The predicted water vapour 
profile compares favourably with Eberius et d’s  data. Figures 4 and 5 show the mole fraction profile of 
OH and H. Again, the prediction compares favourably with the experimental data at the flame front and 
in the reaction zone. However, the calculation overpredicts the OH concentration in the trailing part of 
the flame. 

At the beginning of the calculation a small At is used (e.g. At = 
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Figure 2. Convergence history of calculation with prescribed temperature profile 
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Figure 5. Calculated species distribution of H with prescribed temperature profile 
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Figure 9. Species distribution of OH of wupled calculation 

In Figure 6 the convergence of the energy and H2, 02, H 2 0  and OH species equations are shown for 
the coupled calculation. The coupled calculation requires an inner iteration for each time step to 
calculate Tand p. The convergence criterion of t h i s  inner iteration is set to be lO-’O, which therefore is 
also the lower bound of the species convergences. Figure 7 shows the calculated temperature profile as 
compared with Eberius et a1.k data. The simulated flame experiences an abrupt increase in temperature 
which is much higher than the experimental data. This is because no heat loss effect such as radiation 
is included in the energy equation. A similar numerical result has been observed by Smooke.6 Figures 
8 and 9 show the comparisons between the simulated species concentrations and the experimental data. 
Since the flame pmperature is grossly overpredicted, the number of high-energy radicals such as OH is 
much higher than it should be. Since the mass must be conserved, the existence of the radicals is at the 
expense of the stable species. Consequently, the water vapour concentration is underpredicted, as 
shown in Figure 8. 

5.  CONCLUDING REMARKS 

In this paper we report the extension of the LSFEM to simulate a premixed HZ/O2 flame. A set of 
quasi-one-dimensional species and energy equations with comprehensive physical property models 
was solved. Two approaches were taken: first, we solved the species equations with prescribed 
temperature profile taken from Eberius et al.5 experiment; second, the energy equation was solved with 
species equations in a filly coupled manner. By prescribing the temperature profile, the predicted 
flame structure compared favourably with the experimental results. In contrast, the coupled calculation 
grossly overpredicted the flame temperature and the high-energy radicals. The present study shows that 
the LSFEM is a viable tool for simulating the complex physics of reactive flows. 
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